Metathesis of Silylalkynes and Cross-Metathesis of Silylalkyne and 1-Alkyne over Solid-Base Catalysts

Toshihide Baba,*,¹ Akiko Kato,* Hidetaka Takahashi,* Fumihiko Toriyama,* Haruhisa Handa,* Yoshio Ono,* and Hisashi Sugisawa†

Received October 23, 1997; revised February 2, 1998; accepted March 16, 1998

KF loaded on alumina (KF/Al₂O₃) catalyzed the metathesis of Me₃SiC \equiv CH to Me₃SiC \equiv CSiMe₃ and HC \equiv CH. The catalytic activity of KF/Al₂O₃ depended strongly on the heat-pretreatment temperature under vacuum and the loading amount of KF on alumina. An 87% yield of Me₃SiC \equiv CSiMe₃ was obtained by the reaction of Me₃SiC \equiv CH in 30 min at 298 K in the presence of KF/Al₂O₃ (5 mmol KF/g-Al₂O₃), which had been pretreated at 673 K for 3 h. KF/Al₂O₃ also catalyzed the cross-metathesis of Me₃SiC \equiv CH and 1-alkynes. When Me₃SiC \equiv CH was reacted with PhC \equiv CH in the presence of KF/Al₂O₃ at 318 K for 2 h, PhC \equiv CSiMe₃ was obtained in a 96% yield. The reactions of Me₃SiC \equiv CH with *tert*-BuC \equiv CH and *n*-BuC \equiv CH gave *tert*-BuC \equiv CSiMe₃ and *n*-BuC \equiv CSiMe₃, respectively, in high yields.

INTRODUCTION

Silylalkynes are important in synthetic chemistry. They are used to mask the potentially acidic ethynyl proton and to afford a degree of chemical protection to the triple bond or to activate regioselectively the triple bond towards electrophilic attacks (1). They are also used to prepare vinyl-silanes. Silylalkynes are commonly prepared from alkynes through the reaction of the alkynide anion or its equivalent with a suitable silyl chloride. For example, PhC≡CSiMe₃ is prepared as follows:

$$PhC \equiv CH \xrightarrow{\textit{n-}BuLi} PhC \equiv CLi \xrightarrow{Me_3SiCl} PhC \equiv CSiMe_3. \quad [1]$$

Obviously, the reactions are not catalytic and require a stoichiometric amount of an organometallic compound. Besides the classical methods, several procedures for synthesizing silylalkynes have been reported (2–5). Lermontov $et\,al.$, reported that the reaction of PhBF3 and Me3SiC=CH to PhC=CSiMe3 proceeded in the presence of CuCl (2). However, the main product was PhC=CPh. Hiyama and co-workers reported that the silylation of 1-alkynes with

chlorosilanes took place around 390 K in the presence of zinc powder (3) or an equimolar mixture of samarium powder and Zn(II) chloride (4). In this method, the stoichiometric amounts of metals are required. It has been reported dehydrocondensation of trialkylsilanes with 1-alkynes by using transition metal complexes such as H_2PtCl_6 -metal halide catalysts (5). In this case, hydrosilylation occurs as a side reaction.

Here, we will report the novel method for the catalytic preparation of silylalkynes; namely, metathesis of silylalkynes,

$$2R_3SiC \equiv CH \rightleftharpoons R_3SiC \equiv CSiR_3 + HC \equiv CH$$
, [2]

and cross-metathesis of silylalkynes and 1-alkynes,

$$R^{1}C \equiv CH + R_{3}^{2}SiC \equiv CH \rightleftharpoons R^{1}C \equiv CSiR_{3}^{2} + HC \equiv CH$$
. [3]

Here, alkynide ions are generated by the interaction of alkyne molecules and basic sites on solid surfaces. A proposed reaction scheme is as follows:

$$R^{1}C \equiv CH + B^{-} \rightarrow R^{1}C \equiv C^{-} + BH$$

$$R^{1}C \equiv C^{-} + R_{3}^{2}SiC \equiv CH \rightarrow R^{1}C \equiv CSiR_{3}^{2} + HC \equiv C^{-}$$

$$HC \equiv C^{-} + BH \rightarrow B^{-} + HC \equiv CH.$$
[4]

Here, B^- stands for a basic site on solid surfaces. The solid bases effective for this new class of reactions are KF/Al_2O_3 and KNH_2/Al_2O_3 .

KF loaded on alumina has been used as a convenient base in synthetic organic chemistry (6–16). Recently, Hattori and co-workers reported that treating KF-loaded alumina (KF/Al $_2$ O $_3$) at high temperature (573–673 K) under high vacuum was essential for obtaining the high catalytic activity for double-bond isomerization of 1-pentene (17). We have also reported that KF/Al $_2$ O $_3$ is a highly efficient catalyst for a self-condensation of benzaldehyde to benzyl benzoate when it is preheated under vacuum around 670 K (18), while KF/Al $_2$ O $_3$ pretreated under vacuum around

^{*}Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan; and †Analytical Instrument Division, JEOL Ltd., 1-2 Musashino 3-Chome, Akishima-shi, Tokyo 196, Japan

¹ Corresponding author. E-mail: tbaba@o.cc.titech.ac.jp.

620 K shows the highest catalytic activity for the isomerization of 2,3-dimethylbut-1-ene to 2,3-dimethylbut-2-ene (18). These results suggest that there are two kinds of active sites of KF/Al_2O_3 catalyst as reported in Ref. (17).

The activation of carbonyl group of benzaldehyde and the abstraction of a proton from 2,3-dimethylbut-1-ene seem to be key steps for the self-condensation of benzaldehyde to benzyl benzoate and the isomerization of 2,3-dimethylbut-1-ene to 2,3-dimethylbut-2-ene, respectively. There is a possibility that the two different active sites such as F^- and $\rm O^{2-}$ on the surface of KF/Al_2O_3 are effective for these reactions; however, the definitive supporting evidence is lacking at this stage.

We have also reported that KNH₂/Al₂O₃ which is prepared by loading KNH₂ on Al₂O₃ from the ammoniacal solution, followed by heating under vacuum at 573 K, is a strongly basic catalyst (19). KNH₂/Al₂O₃ showed very high catalytic activities for the isomerization of various alkenes (19) and olefinic amines (20). KNH₂/Al₂O₃ also catalyzed the dehydrocoupling of toluene with Et₂SiH₂ to benzyldiethylsilane (21). The catalytic activities of KNH₂/ Al₂O₃ for these reactions strongly depended on the heating temperature under vacuum as in the case of KF/Al₂O₃ (18– 19). Moreover, Al₂O₃ was a unique support for KNH₂ and KNH₂/Al₂O₃ had a very high catalytic activity, while KNH₂ supported on SiO2 and TiO2 were totally inactive. For example, KNH₂/Al₂O₃ heated under vacuum at 573 K readily isomerized 2,3-dimethylbut-1-ene to 2,3-dimethylbut-2-ene even at 201 K, the yield of 2,3-dimethylbut-2-ene being 95% in 30 min (19). Thus, the high temperature treatment (573 K) for KNH₂/Al₂O₃ is essential for obtaining the super-active catalyst. KNH2 supported on CaO and MgO which were evacuated at 998 and 873 K, respectively, showed much lower catalytic activities than that of KNH₂/Al₂O₃ for the isomerization of alkenes.

We also reported that the exchange reaction between KNH_2 and D_2 occurred on an alumina surface and that the NH_2 groups in KNH_2/Al_2O_3 reacted even with methane. Thus, the exchange reaction between KND_2/Al_2O_3 and CH_4 and C_2H_6 proceeded at room temperature (22). The rate of the exchange of KND_2 with CH_4 was faster than with C_2H_6 in conformity with the difference in their acidities:

$$KND_2 + CH_4 \stackrel{\leftarrow}{\Rightarrow} KNDH + CDH_3$$

 $KNDH + CH_4 \stackrel{\leftarrow}{\Rightarrow} KND_2 + CDH_3.$ [5]

Moreover, when the sample which showed the bands due to the KND_2 , was exposed to 3-methylbut-1-ene at room temperature for 10 min, the bands due to ND_2 groups disappeared and the bands due to NH_2 groups reappeared, besides the bands due to C-H stretching and bending. This shows the NH_2 groups are involved in the isomerization of alkenes (21). It is confirmed that D atoms are contained in the reaction products in the gas phase. Therefore, the ac-

tive sites of KNH_2/Al_2O_3 seem to be NH_2^- ions. However, the possibility that the active sites are O^{2-} ions, is not always contradicted, because Al_2O_3 as a support is essential to show the high catalytic activities for various reactions.

In this work, we will apply the solid base catalysts, KF/Al_2O_3 and KNH_2/Al_2O_3 , to the metathesis of $Me_3SiC \equiv CH$:

$$2Me_{3}SiC{\equiv}CH \rightarrow Me_{3}SiC{\equiv}CSiMe_{3} + HC{\equiv}CH. \hspace{0.5cm} \textbf{[6]}$$

The preparation conditions of highly active KF/Al_2O_3 for this reaction will be explored. The relation between the catalytic activity of KF/Al_2O_3 for the metathesis of $Me_3SiC\equiv CH$ and the surface property of KF/Al_2O_3 will be examined. We also wish to report the cross-metathesis between $Me_3SiC\equiv CH$ with 1-alkynes where $R^1=Ph$, tert-Bu, n-Bu and $R^2=Me$ in Eq. [3].

EXPERIMENTAL

Catalyst Preparation

Alumina used as a support had a surface area of 131 m² g⁻¹ and an average diameter of 15 nm. KF, KOH, and K_2CO_3 supported on alumina were prepared by an impregnation method from their aqueous solutions, followed by drying under air at 393 K for 12 h. Prior to the reactions, the catalysts were evacuated under 10^{-3} Pa at a prescribed temperature for 3 h. In the case of KF/Al₂O₃ catalysts, the loading amount of KF was 5 mmol/g-alumina and the evacuation temperature was 673 K, if not otherwise mentioned. The amounts of KOH and K_2CO_3 were 5 mmol/g-alumina and 2.5 mmol/g-alumina, respectively.

 KNH_2 loaded on alumina was prepared by impregnation from its ammoniacal solution as follows; alumina and a small amount of Fe_2O_3 (2 wt% of Al_2O_3) was placed in a quartz reactor and then heated under vacuum at 673 K for 3 h. Fe_2O_3 was a catalyst for converting K metal into KNH_2 in liquid ammonia. A piece of K metal (2.6 mmol/g- Al_2O_3) was added into the reactor under nitrogen. After evacuation, ammonia was liquefied to dissolve the K metal. The blue color due to solvated electrons disappeared in about 10 min, indicating the formation of KNH_2 . After 1 h, the reactor was warmed to room temperature to remove liquid ammonia and heated under vacuum at 573 K for 1 h.

CaO and MgO were prepared by heating $CaCO_3$ and $Mg(OH)_2$ under vacuum for 3 h at 998 and 873 K, respectively.

Reaction Procedures

Silylethynes such as Me₃SiC≡CH obtained from Shinetsu Chemical Co. Ltd., were used without further purification. 1-Alkynes such as PhC≡CH were distilled under reduced pressure. Benzene and heptane were refluxed with Na metal for 5 h before distillation.

490 BABA ET AL.

The reactant(s) placed in a glass tube, which is attached to the side arm of the quartz reactor, was(were) degassed with a freeze-thaw method. The reaction was started by transferring the reactant(s) into the reactor containing a catalyst prepared as described above. The products were identified with ¹H or ¹³C NMR and GS-MAS. The yields of the products were determined with a gas-chromatograph (an OV 101 glass column) and were calculated on the basis of silylacetylenes. Propylbenzene was used as an internal standard for quantitative analysis.

Identifications

¹H NMR or ¹³C NMR data of products were good agreement with those which have been already reported as follows:

 1 H NMR date of products have been already reported. Me₃SiC≡CSiMe₃: Dunogues, J., Bourgeois, P., Pilot, J. P., and Merault, G., *J. Organomet. Chem.* **87**, 169 (1975). GC MAS: m/e 180, 170, 155, 73. PhC≡CSiMe₃: Bulmanpage, P. C., and Rosenthal, S., *Tetrahedron* **46**, 2573 (1990). GC MAS: m/e 174, 159, 129, 105. n-C₄H₉C≡CSiMe₃: Bulman-Page, P. C., and Rosenthal, S., *Tetrahedron* **46**, 2573 (1990). GC MAS: m/e 139, 112, 83. tert-t-t0 C≡CSiMe₃: Zweifel, G., and Vewis, W., *J. Org. Chem.* **43**, 2739 (1978). GC MAS: m/e 154, 139, 97, 73.

¹³C NMR data. Et₃SiC≡CSiEt₃: Kamienska-Trla, K., Beidrzycka, Z., Machinek, K., Knieriem, B., and Luettke, W., *Org. Magn. Reson.* **22**, 317 (1984).

 1 H NMR data. PhCH=CH-C=CPh (270 MHz, CDCl₃) δ 5.91 (d, J=11.8 Hz 1H CH=CH), 6.69 (d, J=11.8 Hz 1H CH=CH), 7.23–7.93 (m, 5H, Ph). GC MAS: m/e 204, 101.

PhCH=CH-C \equiv CSiMe₃ (270 MHz, CDCl₃) δ 0.12 (s, 9H, SiMe₃), 5.71 (d, J = 12.0 Hz 1H CH=CH), 6.66 (d, J = 12.0 Hz 1H CH=CH), 7.2–7.7 (m, 5H, Ph).

GC MAS data. $Me_2(EtO)SiC \equiv CSi(EtO)$ Me_2 : m/e 215, 171, 133, 103, 73. $Me_2(EtO)SiC \equiv CSi(Me_2)C \equiv CH$: m/e 195. $Me_2(EtO)SiC \equiv CSi(Me)_2$ $C \equiv CSi(EtO)Me_2$: m/e 283, 253, 223, 191, 141, 112, 73.

¹⁹F MAS NMR Measurements

The samples for ¹⁹F MAS NMR measurements were prepared in a glass tube by the same manner as the case of the catalyst preparation. The glass tube with side arms was connected to a glass capsule used for ¹⁹F MAS NMR measurements. After the preparation of the sample, it was transferred into a glass capsule under a vacuum. The neck of the capsule was then sealed, while the sample itself was maintained at 77 K.

¹⁹F MAS NMR spectra were recorded at 298 K on a Chemagnetics CMX-Infinity spectrometer operating at 282.4 MHz. A sealed sample in a glass tube was inserted into a zirconia rotor. The spinning rate of the sample was

12 kHz. The chemical shifts were referenced relative to external $CFCl_3$ (0.0 ppm).

RESULTS AND DISCUSSION

Catalytic Activities of Various Solid Bases

The reaction of Me₃SiC≡CH was carried out at 293 K for 30 min by using various solid-base catalysts. As shown in Table 1, the formation of Me₃SiC≡CSiMe₃ was observed in every case. Although not quantified, the formation of acetylene was confirmed by the analysis of the gas phase with a gas-chromatograph. The pressure of the reactor increased to ca 45 kPa in 30 min, when KF/Al₂O₃ was used as a catalyst. These results suggest that the metathesis of Me₃SiC≡CH to Me₃SiC≡CSiMe₃ and HC≡CH proceeds. The reaction is very selective, no other products being observed. KF/Al₂O₃, KNH₂/Al₂O₃, CsOH/Al₂O₃, and MgO gave about 77% yields of Me₃SiC≡CSiMe₃. The catalytic activities of KOH/Al₂O₃ and K₂CO₃/Al₂O₃ were lower, the yields being 64 and 11%, respectively. Although CaO is a strong solid base (12), CaO showed a very low catalytic activity.

We reported that the optimum amount of KNH_2 loaded on Al_2O_3 was 2.6 mmol of KNH_2 per g-alumina for the isomerization of 2,3-dimethylbut-1-ene (19) and the dimerization of phenylacetylene to (Z)-1,4-diphenylbut-1-ene-3-yne (23). $KNH_2(2.6 \text{ mmol/g-alumina})/Al_2O_3$ was also used as a catalyst for the metathesis reaction. When the reaction was carried out at 273 K, the yields of $Me_3SiC \equiv CSiMe_3$ over KF/Al_2O_3 , KNH_2/Al_2O_3 , and MgO were 78, 61, and 72% in 30 min, respectively. Thus, KF/Al_2O_3 showed the highest catalyst for this reaction.

TABLE 1

Catalytic Activities of Various Solid Base Catalysts for Metathesis of Me₃SiC≡CH

Catalyst	Pretreatment temperature/ K	Amount of base/ mmol per g-alumina	Yield of Me ₃ SiC≡CSiMe ₃ / %
KF/Al ₂ O ₃	673 K for 3 h	5	77
			78^a
KNH ₂ /Al ₂ O ₃	573 K for 1 h	2.6	76
			61^{a}
MgO	773 K for 3 h		74
Ü			72^a
CsOH/Al ₂ O ₃	673 K for 3 h	5	74
KOH/Al ₂ O ₃	673 K for 3 h	5	64
K ₂ CO ₃ /Al ₂ O ₃	673 K for 3 h	5	11
CaO	998 K for 3 h		2

Note. Reaction conditions: 293 K, 30 min, catalyst weight; 0.25 g, $Me_3SiC \equiv CH$: 13.5 mmol.

^a Reaction temperature was 273 K. The yields were calculated on the basis of Me₃SiC≡CH.

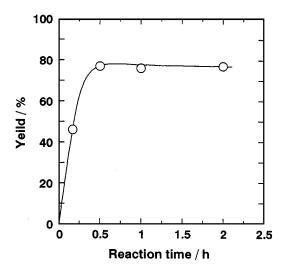


FIG. 1. Yield of Me $_3$ SiC≡CSiMe $_3$ with reaction time in the metathesis of Me $_3$ SiC≡CH by KF/Al $_2$ O $_3$. Reaction conditions: catalyst: 0.125 g of K/Al $_2$ O $_3$, Me $_3$ SiC≡CH: 13.5 mmol, 293 K. KF/Al $_2$ O $_3$ was pretreated by heating under vacuum at 673 K for 3 h.

Reaction of $Me_3SiC \equiv CH$ over KF/Al_2O_3

Figure 1 shows the change in the yield of $Me_3SiC\equiv CSiMe_3$ with reaction time in the reaction of $Me_3SiC\equiv CH$ in the presence of KF/Al_2O_3 . The reaction was carried out at 293 K in a reactor system whose dead volume was 356 cm³. The yields of $Me_3SiC\equiv CSiMe_3$ were 46 and 77% in 10 and 30 min, respectively. The yield did not change by further expanding the reaction time to 2 h. This indicates that the reaction is reversible and that the equilibrium of Eq. [6] is established in 30 min. Actually, formation of $Me_3SiC\equiv CH$ by the reaction of $Me_3SiC\equiv CSiMe_3$ with acetylene was confirmed.

When a reactor system with a larger dead volume was used (1350 cm³), the yield in 30 min increased to 87%. This yield dependence on the volume of the reactor system indicates that the yield depends on the partial pressure of acetylene in the gas phase because of the equilibrium.

Influence of the Loading Amount of KF on Al₂O₃

The effect of the loading amount of KF on Al_2O_3 on the yield of $Me_3SiC\equiv CSiMe_3$ was examined at 273 K (Fig. 2). Al_2O_3 showed no catalytic activity. The yield increased with increasing KF content, a maximum yield of 78% being observed at 5 mmol/g- Al_2O_3 , or 0.5 mol KF/mol Al_2O_3 . Further increase of the loading amount of KF beyond 5 mmol/g- Al_2O_3 led to the decrease of the catalytic activity. The selectivity for $Me_3SiC\equiv CSiMe_3$ was always 100% and was independent of the loading amount of KF.

 Al_2O_3 and KF heated at 673 K under vacuum, when separately used, showed no catalytic activity. Moreover, KF supported on SiO_2 , TiO_2 , and activated carbon showed no catalytic activity. Thus, it is essential to support KF on alu-

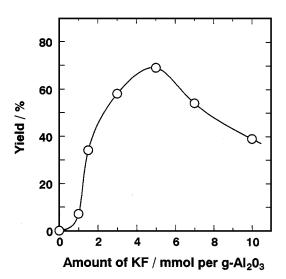


FIG. 2. Effect of the loading amount of KF on alumina on the yield of Me₃SiC≡CSiMe₃. Reaction conditions: catalyst: 0.125 g of KF/Al₂O₃, Me₃SiC≡CH: 13.5 mmol, 273 K, 1 h. KF/Al₂O₃ was pretreated by heating under vacuum at 673 K for 3 h.

mina to generate the catalytic activity, indicating that the active sites are generated by the reaction of KF with alumina.

Influence of Pretreatment Temperature of KF/Al₂O₃

It has been reported that the catalytic activity of KF/Al_2O_3 depends very much on the drying conditions of alumina after loading KF by impregnation (8). Figure 3 shows the influence of the temperature of pretreatment under vacuum on the catalytic activity of KF/Al_2O_3 at 273 K. KF/Al_2O_3 samples were heated under vacuum for

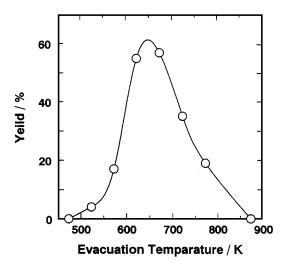


FIG. 3. Influence of evacuation temperature on the catalytic activity of KF/Al_2O_3 for metathesis of $Me_3SiC\equiv CH$. Reaction conditions: catalyst: 0.125 g of KF/Al_2O_3 , $Me_3SiC\equiv CH$: 13.5 mmol, 273 K, 0.5 h. KF/Al_2O_3 was pretreated by heating under vacuum at prescribed temperature for 3 h.

492 BABA ET AL.

3 h at various temperatures. The catalytic activity strongly depended on the pretreatment temperature. The yield of $Me_3SiC\equiv CSiMe_3$ sharply increased with increasing the pretreatment temperatures and reached a maximum around 670 K. At higher pretreatment evacuation temperature than 670 K, the catalytic activity declined and almost disappeared by evacuating the catalyst at 873 K.

The similar dependence of the catalytic activity on the pretreatment temperature has been reported for the isomerization of 1-pentene (17) and the self-condensation of benzaldehyde (18).

The surface area of KF/Al $_2$ O $_3$ did not change much in the pretreatment temperature range of 523 to 773 K, being constant (ca 90 m 2 /g). This result indicates that the decrease in the activity of KF/Al $_2$ O $_3$ above 673 K, is not caused by the decrease in the surface area and that the surface chemical state of the KF/Al $_2$ O $_3$ changes with thermal treatment.

Metathesis of Other Silylalkynes

Metathesis of Et₃SiC≡CH also proceeded over KF/Al₂O₃ or KNH₂/Al₂O₃ to selectively afford the corresponding bisilylethyne, Et₃SiC≡CSiEt₃. When the reaction was carried out in benzene at 333 K, the yields of Et₃SiC≡CSiEt₃ over KF/Al₂O₃ were 53 and 84% in 30 min and 2 h, respectively (Table 2). Selective metathesis of Et₃SiC≡CH also occurred over KNH₂/Al₂O₃, the yield being 47% in 2 h.

Me₂(EtO)SiC≡CH also underwent metathesis over these catalysts. Heptane was used as a solvent. The main product was Me₂(EtO)SiC≡CSi(EtO) Me₂, I (Table 3). Heptane was used as a solvent. The yields of I were 56 and 61% in 30 min and 1 h, respectively, when KF/Al₂O₃ was used as a catalyst. The Me₂(EtO)SiC≡CH gave a 77% yield over KNH₂/Al₂O₃ in 1 h. The formation of a small amount of Me₂(EtO)SiC≡CSi(Me₂)C≡CH, II, and Me₂(EtO)SiC≡CSi(Me)₂C≡CSi(EtO)Me₂, III, were confirmed by a GC-MS analysis (Table 3). The compound II is formed when the leaving group is EtO[−] instead of CH≡C[−]:

$$\begin{split} & Me_2(EtO)SiC \equiv C^- + Me_2(EtO)SiC \equiv CH \\ & \rightarrow Me_2(EtO)SiC \equiv CSi(Me_2)C \equiv CH + EtO^-. \end{split}$$

TABLE 2

Metathesis of Et₃SiC≡CH

Catalyst	Reaction time/h	Yield of Et ₃ SiC≡CSiEt ₃ /%
KF/Al ₂ O ₃	0.5	53
KF/Al ₂ O ₃	2	84
KNH_2/Al_2O_3	2	47

Note. Reaction conditions: 333 K, catalyst weight: 0.25 g, $Et_3SiC\equiv CH$: 2.8 mmol, benzene as solvent: 2 ml. The yields were calculated on the basis of $Et_3SiC\equiv CH$.

TABLE 3 $\label{eq:metathesis} \mbox{Metathesis of Me}_2(\mbox{EtO}) \mbox{SiC} {=} \mbox{CH}$

Catalyst	Reaction time/h	Yield/%		
		I	II	III
KF/Al ₂ O ₃	0.5	56	3	4
KF/Al ₂ O ₃	1	61	4	7
KNH ₂ /Al ₂ O ₃	1	77	2	5

Note. $I=Me_2(EtO)SiC\equiv CSi(EtO)Me_2$; $II=Me_2(EtO)SiC\equiv CSi(C\equiv CH)Me_2$; $III=Me_2(EtO)SiC\equiv CSiMe_2C\equiv CSi(EtO)Me_2$. Reaction conditions: 313 K, catalyst weight: 0.2 g, $Me_2(EtO)SiC\equiv CH$: 3.1 mmol, Solvent: heptane 2 ml. The yields were calculated on the basis of $Me_2(EtO)SiC\equiv CH$.

The compound III is formed by the further reaction of II with $Me_2(EtO)SiC \equiv CH$:

$$\begin{split} & Me_2(EtO)SiC = CSi(Me_2)C = CH + Me_2(EtO)SiC = CH \\ & \rightarrow Me_2(EtO)SiC = CSi(Me)_2C = CSi(EtO)Me_2 + CH = CH. \\ & III & [8] \end{split}$$

The order of the reactivates of silylacetylenes is

$$Me_3SiC \equiv CH > Et_3SiC \equiv CH > Me_2(EtO)SiC \equiv CH$$
.

The difference of reactivities of these compounds seems to depend on the steric hindrance of the alkyl groups of silylacetylenes.

Cross-Metathesis between Me₃SiC≡CH and 1-alkyne

When a mixture of $Me_3SiC\equiv CH$ (9.4 mmol) and $PhC\equiv CH$ (18.2 mmol) was stirred with 0.25 g of KF/Al_2O_3 at 318 K for 2 h, 9.0 mmol of $PhC\equiv CSiMe_3$ was obtained (96% yield on the basis of $Me_3SiC\equiv CH$) as shown in Table 4. KNH_2/Al_2O_3 also selectively catalyzed the crossmetathesis, the yield of $PhC\equiv CSiMe_3$ being 91% (Table 4). In both cases, the metathesis of $Me_3SiC\equiv CH$ to $Me_3SiC\equiv CSiMe_3$ and acetylene was almost completely suppressed in the presence of $PhC\equiv CH$.

The reaction was carried out by using a mixture of $Me_3SiC\equiv CH$ (9.4 mmol) and $PhC\equiv CH$ (9.4 mmol) (the ratio of $Me_3SiC\equiv CH$ to $PhC\equiv CH=1.0$) with KF/Al_2O_3 . The metathesis reaction of $Me_3SiC\equiv CH$ was also proceeded, the yield of $Me_3SiC\equiv CSiMe_3$ being 19% (Table 4). The selectivity for $PhC\equiv CSiMe_3$ decreased by decreasing the ratio of $PhC\equiv CH$ to $Me_3SiC\equiv CH$, while the selectivity for $Me_3SiC\equiv CSiMe_3$ increased.

We have reported that KNH_2/Al_2O_3 catalyzed the selective dimerization of $PhC\equiv CH$ to (Z)-1,4-diphenylbut-3-ene-1-yne in high yield at 363 K (24). When $PhC\equiv CH$ (27.6 mmol) was stirred with 0.25 g of KNH_2/Al_2O_3 at 313 K, the yield of $PhCH=CH-C\equiv CPh$ was 12% in 20 h:

TABLE 4
Cross-Metathesis between Me ₃ SiC≡CH and PhC≡CH

Catalyst	KF/Al_2O_3	KF/Al_2O_3	KNH ₂ /Al ₂ O ₃
Reactant			
PhC≡CH	18.2 mmol	9.4 mmol	18.0 mmol
Me ₃ SiC≡CH	9.4 mmol	9.4 mmol	9.4 mmol
Consumption			
PhC≡CH	9.3 mmol	8.7 mmol	9.7 mmol
$Me_3SiC\equiv CH$	9.1 mmol (97%)	8.5 mmol (90%)	9.0 mmol (96%)
Products			
$PhC \equiv CSiMe_3$	9.0 mmol (96%)	7.6 mmol (81%)	8.5 mmol (91%)
$Me_3SiC \equiv CSiMe_3$	0.04 mmol	0.89 mmol (19%)	trace
(Z) -PhC \equiv C-CH \equiv CHPh	0.10 mmol	0.06 mmol	0.24 mmol
PhCH=CHC≡CSiMe ₃	0.01 mmol	0.02 mmol	0.03 mmol

Note. Reaction conditions: 318 K, 2 h, catalyst 0.25 g. Numbers in parentheses are the yields on the basis of Me₃SiC≡CH.

The reaction [9] was also suppressed when the two alkynes exist in the system, indicating that the anion $PhC \equiv C^-$ attacks mostly at Si atom in Me₃SiC \equiv CH, but not at the terminal carbon atoms in ethynyl groups of $PhC \equiv CH$ and Me₃SiC \equiv CH.

The reaction of Me₃SiC \equiv CH (8.1 mmol) and tert-BuC \equiv CH (16.0 mmol) at 303 K in the presence of KF/Al₂O₃ gave 58 and 78% yields of tert-BuC \equiv CSiMe₃ in 2 and 20 h, respectively (Table 5). In this case, the yield of the side-product, Me₃SiC \equiv CSiMe₃ was 16% in 2 h, while it decreased to 3% in 20 h, indicating that at least a part of tert-BuC \equiv CSiMe₃ was formed by a secondary reaction between Me₃SiC \equiv CSiMe₃ and tert-BuC \equiv CH:

$$2Me_3SiC\equiv CH \rightarrow Me_3SiC\equiv CSiMe_3 + HC\equiv CH$$
 [10]

TABLE 5

The Cross-Metathesis between Me₃SiC≡CH and tert-BuC≡CH or n-C₄H₉C≡CH over KF/Al₂O₃

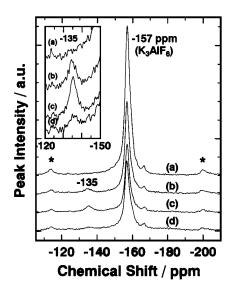
RC≡CH	Reaction temperature/K	Reaction time/h	Yield of product/%	
tert-BuC≡CH	303	2	tert-BuC≡CSiMe ₃ Me ₃ SiC≡CSiMe ₃	58 16
	303	20	tert-BuC≡CSiMe ₃ Me ₃ SiC≡CSiMe ₃	78 3
n-C ₄ H ₉ C≡CH	318	2	n-C ₄ H ₉ C≡CSiMe ₃ Me ₃ SiC≡CSiMe ₃ 2-hexyne 3-hexyne	59 16 0.6 0.4
	318	20	n-C ₄ H ₉ C≡CSiMe ₃ Me ₃ SiC≡CSiMe ₃ 2-hexyne 3-hexyne	83 3 2 0.5

Note. Reaction conditions: catalyst KF/Al $_2$ O $_3$ 0.25 g, Me $_3$ SiC=CH 8.1 mmol, RC=CH 17.3 mmol. The yields of RC=CSiMe $_3$ and Me $_3$ SiC=CSiMe $_3$ were calculated on the basis of Me $_3$ SiC=CH. The yields of hexynes were calculated on the basis of 1-hexyne.

$$Me_3SiC \equiv CSiMe_3 + tert$$
-BuC $\equiv CH$
 $\rightarrow tert$ -BuC $\equiv CSiMe_3 + Me_3SiC \equiv CH$. [11]

When Me₃SiC \equiv CH (8.7 mmol) was stirred with 0.25 g of KF/Al₂O₃ in the presence of n-C₄H₉C \equiv CH (17.3 mmol) at 318 K for 20 h, n-C₄H₉C \equiv CSiMe₃ (7.2 mmol) was obtained in a 83% yield. The yields of Me₃SiC \equiv CSiMe₃ were 16 and 3% in 0.5 h and 20 h, respectively. The isomerization of n-C₄H₉C \equiv CH to 2-hexyne and 3-hexyne slightly occurred.

The Si atom in Me₃SiC \equiv CH is more cationic than the carbon atoms of ethynyl groups in PhC \equiv CH, n-C₄H₉C \equiv CH and tert-BuC \equiv CH, while the acidity of protons of PhC \equiv CH may be higher than that of Me₃SiC \equiv CH. PhC \equiv C $^-$ ions are more easily generated than Me₃SiC \equiv C $^-$ ions and attack selectively at Si atom in Me₃SiC \equiv CH. The acidity of ethynyl protons in n-C₄H₉C \equiv CH and tert-BuC \equiv CH may be a little different, as compared with Me₃SiC \equiv CH. Therefore, the selectivity of PhC \equiv CSiMe₃ is higher, as compared with those of n-C₄H₉C \equiv CSiMe₃ and tert-BuC \equiv CSiMe₃.


Basic Sites of KF/Al₂O₃

As for the basic sites on KF/Al_2O_3 , several proposals have been made (8, 24, 25). It is known that K_3AlF_6 is formed by the reaction of aqueous KF and alumina:

$$12KF + Al_2O_3 + 3H_2O \rightarrow 2K_3AlF_6 + 6KOH.$$
 [12]

We have also reported that the formation of K_3AlF_6 is confirmed by XRD in the sample upon loading KF by impregnation on Al_2O_3 and that K_3AlF_6 still exists after heating the sample at 673 K (18). To check the catalytic activity of K_3AlF_6 , the metathesis reaction of $Me_3SiC \equiv CH$ was carried out by using neat K_3AlF_6 and K_3AlF_6 which had been supported on Al_2O_3 by impregnation and heated under the vacuum at 673 K. Both catalysts showed no catalytic activity. Moreover, the XRD pattern due to K_3AlF_6 was observed after pretreating KF/Al_2O_3 at 873 K, where its catalytic

494 BABA ET AL.

FIG. 4. ¹⁹F MAS NMR spectra of KF (5 mmol/g-alumina) recorded at the room temperature. Evacuation temperature: (a) 473 K; (b) 623 K; (c) 673 K; and (d) 773 K. (*) Spinning side bands.

activity was completely lost. These results may suggest that K_3AlF_6 is not catalytically active species for the metathesis reaction.

Furthermore, the catalytic activity of KOH and that of K_2CO_3 loaded on alumina were lower than that of KF/Al_2O_3 (Table 1), while the surface area of KOH/ Al_2O_3 and that of K_2CO_3/Al_2O_3 were 121 and 132 m^2/g , respectively, which are larger than that of KF/Al_2O_3 (92 m^2/g). These results suggest that F^- ions may be more responsible for the catalytic activity than O^{2-} ions, which may be basic sites on KOH/Al_2O_3 and K_2CO_3/Al_2O_3 for the methasesis reactions. Ando *et al.* stressed the importance of coordinately unsaturated F^- ions as the basic sites, although they did not deny the participation of the hydroxide species (8, 24).

Figure 4 shows the ^{19}F MAS NMR spectrum of KF/Al $_2$ O $_3$ evacuated at prescribed temperatures. The major band was observed at -157 ppm attributed to K $_3$ AlF $_6$ (26, 27). The small peak at -166 ppm was also observed, as shown in Fig. 4. The intensities of the peak at -155 and -166 ppm decreased by raising the evacuation temperature. On the other hand, the intensity of the peak at -135 ppm increased with evacuation temperature and through a maximum at 473 K, it decreased. The peak at -135 ppm was not observed when the sample was evacuated at 873 K. The intensity change of the peak at -135 ppm with evacuation temperature almost paralleled with the change in the catalytic activity for the metathesis of Me $_3$ SiC \equiv CH with the evacuation temperature as in the case of the self-condensation of benzaldehyde to benzyl benzoate (18). Since the F $^-$ species giving this ^{19}F

NMR signal is directly related to the catalytic activity, F^- ions may be the basic sites over KF/Al_2O_3 .

CONCLUSION

Metathesis between two molecules of $R_3SiC\equiv CH$ (R=Me, Et) proceeds easily in the presence of solid bases, namely KF/Al_2O_3 and KNH_2/Al_2O_3 . These solid bases also promote the cross-metathesis between $Me_3SiC\equiv CH$ and $RC\equiv CH$ (R=Ph, *tert-Bu*, *n-Bu*). These reactions are catalytic and offer a new synthetic pathway for producing alkynylsilanes.

REFERENCES

- Colvin, E., "Silicon in Organic Synthesis," p. 165. Butterworths, London, 1981.
- Lermontov, S. A., Rakov, I., and Zefirov, N. S., *Tetrahedron Lett.* 37, 4051 (1996).
- Sugita, H., Hatanaka, Y., and Hiyama, T., Tetrahedron Lett. 36, 2769 (1995).
- 4. Sugita, H., Hatanaka, Y., and Hiyama, T., Synlett, 637 (1996).
- 5. Fremandez, M. J., and Oro, L. A., J. Mol. Catal. 45, 7 (1988).
- 6. Yamawaki, J., and Ando, T., Chem. Lett. 755 (1979).
- Yamawaki, J., Kawata, T., Ando, T., and Hanafusa, T., Bull. Chem. Soc. Jpn 56, 1885 (1983).
- Ando, T., Brown, S. J., Cark, J. H., Cork, P. G., Hanfusa, T., Ichihara, J., Miller, J. M., and Robertson, M. S., *J. Chem. Soc., Perkin Trans.* 2, 1133 (1986).
- 9. Villemin, D., J. Chem. Soc. Chem. Commun., 1092 (1983).
- 10. Laszlo, P., and Pennetreau, P., Tetrahedron Lett. 26, 2645 (1985).
- Clark, J. H., Cork, P. G., and Robertson, M. S., Chem. Lett., 1145 (1983)
- 12. Yamawaki, J., and Ando, T., Chem. Lett., 533 (1980).
- 13. Yamawaki, J., Ando, T., and Hanafusa, T., Chem. Lett., 1143 (1981).
- Ando, T., Yamawaki, Y., Kawata, T., and Sumi, S., and Hanafusa, T., Bull. Chem. Soc. Jpn 55, 2504 (1982).
- Texier-Boullet, F., Villemin, D., Ricard, M., Moison, H., and Foucaud, A., Tetrahedron 41, 1259 (1985).
- Radhakrishna, A. S., Suri, S. K., Prasad Rao, K. R. K., Sivaprakash, K., and Singh, B. B., *Syn. Commun.* 20, 345 (1990).
- 17. Tsuji, H., Kabashima, H., Kita, H., and Hattori, H., *React. Kinet. Catal. Lett.* **56**, 363 (1995).
- 18. Handa, H., Baba, T., Sugisawa, H., and Ono, Y., J. Mol. Catal., in press.
- Baba, T., Handa, H., and Ono, Y., J. Chem. Soc. Faraday Trans. 90, 187 (1994).
- Handa, H., Baba, T., Yamada, H., Takahashi, T., and Ono, Y., Catal. Lett. 44, 119 (1997).
- 21. Baba, T., Yuasa, H., Handa, H., and Ono, Y., Catal. Lett. 50, 83 (1998).
- 22. Handa, H., Baba, and Ono, Y., Faraday Trans. 194, 451 (1998).
- Ando, T., Clark, H. H., Cork, D. G., Hanafusa, T., Ichihara, J., and Kimura, T., Tetrahedron Lett. 28, 1421 (1987).
- Baba, T., Kato, A., Handa, H., and Ono, Y., Catal. Lett. 47, 77 (1997).
- Weinstock, L. M., and Stevenson, J. M., *Tetrahedron Lett.* 27, 3845 (1986).
- 26. Duke, C. V. A., and Miller, J. M., J. Mol. Catal. 62, 233 (1990).
- Clark, J. H., Goodman, E. M., Smith, D. K., Brown, S. J., and Miller, J. M., J. Chem. Soc., Chem. Commun., 657 (1986).